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Abstract. We introduce a new simulation method, which we call the contact-distribution method, for the
determination of the Helmholtz potential for polymer/colloid systems from lattice Monte-Carlo simulations.
This method allows one to obtain forces between finite or semi-infinite objects of any arbitrary shape and
dimensions in the presence of polymer chains in solution or physisorbed or chemisorbed at interfaces. We
illustrate the application of the method using two examples: (i) the interaction between the tip of an
atomic force microscope (AFM) and a single, end-grafted polymer chain and (ii) the interaction between
an AFM tip and a polymer brush. Numerical results for the first two cases illustrate how the method can
be used to confirm and extend scaling laws for forces and Helmholtz potentials, to examine the effects of
the shapes and sizes of the objects and to examine conformational transitions in the polymer chains.

PACS. 36.20.-r Macromolecules and polymer molecules – 36.20.Ey Conformation (statistics and dynamics)
– 02.70.Lq Monte-Carlo and statistical methods

1 Introduction

Interactions between polymers and colloidal surfaces play
a central role in a large number of chemical, biological
and materials sciences and processes. The understanding
of these forces and the methods to determine them exper-
imentally and theoretically are essential for tailoring poly-
mer additives and polymer-induced forces in an increasing
number of applications of both scientific and industrial rel-
evance. In this context, the importance of computer simu-
lations as a tool to test theories, to interpret experimental
measurements or to just provide a better understanding
of a given problem is evident.

In this work we introduce a new method based on
Monte-Carlo (MC) simulations for determining the forces
in polymer/colloid systems. The method is general enough
to allow examination of systems with chemisorbed (i.e.,
grafted) or physisorbed polymer chains on surfaces of ar-
bitrary shape and dimensions and is computationally very
efficient. We have already used this method, in a prelimi-
nary communication, to examine the interaction between
an AFM tip and a polymer mushroom [1]. The objective
of the present paper is to present the details of the sim-
ulation method and to illustrate its application through
an extension of our previous work on polymer mushrooms
and new results for polymer brushes.

a e-mail: raj@eng.ufl.edu

The paper is organized as follows: in Section 2 we re-
view briefly two methods available in the literature, one for
determining forces between a bare surface and a polymer
coated one and the other for determining free energy dif-
ferences from MC simulations in any general system (i.e.,
not necessarily containing polymers). We draw from these
two methods to formulate the new simulation technique
for obtaining the force and Helmholtz potential. Section 3
presents the details of the new technique, which we call
the contact-distribution method, and Section 4 illustrates
its application to two different problems, namely, the in-
teraction between an AFM tip and a single end-grafted
polymer chain and the interaction of the AFM tip and a
polymer brush. We also comment briefly on the applica-
tion of the method to study the interaction of two particles
in a polymer solution.

2 Free energy differences from Monte-Carlo
data

Obtaining the Helmholtz potentials (and, therefore, the
forces) from Monte-Carlo simulations is not straightfor-
ward. As a prelude to the method we propose in the next
section, here we review briefly two techniques that are
related to the focus of this paper. One of these is the
repulsive-wall technique of Dickman [2–4], which he has
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used to determine the force due to compression of a poly-
mer brush by a bare surface (“wall”). The other is a tech-
nique introduced by Bennet [5] for estimating free-energy
differences between two systems (not necessarily contain-
ing polymers) from simulations. It will be seen in Section 3
how these two techniques relate to the method proposed
in this paper.

2.1 Repulsive-wall technique

For introducing the repulsive-wall technique, we consider
a three-dimensional lattice with two planar surfaces sep-
arated from each other by a distance z = H. We take the
surface located at z = 0 to be coated with polymer chains
and the surface at z = H to be a bare surface. The force
of interaction between the two surfaces arising from the
presence of the polymer chains is simply the change in
free energy as the bare surface is moved from z = H to
z = H− 1. This change in the Helmholtz potential can be
written as

β∆F =

1∫
0

∂ lnQ

∂λ
dλ, (1)

where Q is the partition function of the system and λ is a
parameter defined as λ = e−βV , with V being a fictitious
potential applied to the lattice plane immediately next to
the bare wall (i.e., z = H − 1). Note that λ = 1 corre-
sponds to V = 0, that is, the bare surface is at z = H; in
contrast, λ = 0 (i.e., V = ∞) implies that the bare sur-
face is at z = H − 1 (since the excluded-volume criterion
prevents the polymer segments from the adjoining surface
from occupying z = H − 1).

Equation (1) can be evaluated from the average num-
ber of contacts made by the polymer segments with the
wall (i.e., the average number of segments occupying the
layer at z = H − 1) for a number of values of V between
0 and ∞. Note that the derivative in equation (1) can be
written in terms of the number of polymer segments Nc
in layer H − 1 as follows:

∂ lnQ

∂λ
=

∑
Nce

−βUλNc−1∑
e−βUλNc

=
1

λ
〈Nc〉, (2)

where the configurational energy U does not include the
contribution NcV , which is written separately as shown.
Equation (1) then becomes

β∆F =

1∫
0

〈Nc〉

λ
dλ. (3)

The above integral is evaluated by performing simulations
for different values of V , and hence, for different values
of λ. (Dickman [2] suggests that at least six values of λ
be used.) One calculates 〈Nc〉 from each simulation and

obtains the value of 〈Nc〉/λ at λ = 0 (i.e., V = ∞) by
extrapolation. Equation (3) is then evaluated by numerical
integration. This method is computationally demanding
and is not very accurate if 〈Nc〉/λ is not a smooth function
that can be extrapolated easily to λ = 0.

2.2 Acceptance-ratio method

The other technique that is of interest here, developed by
Bennet [5], is called the acceptance-ratio method and was
introduced as an efficient way to estimate free energy dif-
ferences from Monte-Carlo data in any kind of system. It
considers two systems, denoted as 0 and 1, with configu-
rational energies U0 and U1 obtained from respective pair-
potentials u0 and u1. The ratio of the canonical partition
functions of these systems, which defines the difference in
Helmholtz energy β∆F = ln(Q0/Q1), can be written as

Q0

Q1
=
Q0

Q1

∫
drNw(rN )e−β(U0+U1)∫
drNw(rN )e−β(U0+U1)

=

〈
w(rN )e−βU0

〉
1

〈w(rN )e−βU1〉0
,

(4)

where w(rN ) is a weight function for the configuration
specified by rN , the positions of the N particles in the
system. The optimum choice for w(rN ) is obtained by
minimizing the statistical error in β∆F with respect to
w(rN ) [5,6]. Such a procedure leads to

Q0

Q1
=

〈
{1 + e−β(U0−U1+C)}−1

〉
1〈

{1 + e−β(U1−U0−C)}−1
〉

0

eβC , (5)

where C is a constant. Rewriting equation (5) in terms of
the Fermi-Dirac function

g(x) =
1

1 + eβx
,

one obtains

Q0

Q1
=
〈g(U0 − U1 + C)〉1
〈g(U1 − U0 − C)〉0

eβC . (6)

Bennet [5] has shown that the optimal choice of C, de-
noted henceforth as C∗, corresponds to

eβC
∗

=
Q0

Q1

n1

n0
, (7)

where n0 and n1 are the numbers of statistically inde-
pendent samples taken from systems 0 and 1, respec-
tively. Substituting for (Q0/Q1) in equation (6) and taking
C = C∗, one gets

n1∑
i=1

g(U (1)
0,i − U

(1)
1,i + C∗) =

n0∑
i=1

g(U (0)
1,i − U

(0)
0,i − C

∗), (8)

where U (j)
1,i is the energy obtained from the ith sample

of system j using the pair-potential u1 and, similarly,

U (j)
0,i is the energy calculated with the pair-potential u0.
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(Note that one needs to run simulations of both systems
and that the Boltzmann sampling in each system is based

on its own configurational energy. For example, U (0)
1,i is the

configurational energy calculated using the pair-potential
u1 for a sample which is chosen with a probability propor-
tional to exp (−βU0) from system 0.) Once C∗ is obtained
from equation (8), it can be substituted into equation (7)
for (Q0/Q1) so that ∆F can be obtained from

ln

(
Q0

Q1

)
= β∆F = βC∗ − ln

n1

n0
· (9)

In Section 3 below we use these two methods to develop
a new technique to obtain forces from Monte-Carlo sim-
ulations. The new technique is computationally efficient
and requires only two simulations to obtain the force in
contrast to Dickman’s method.

3 The new technique: contact-distribution
method

Similar to the situation in the above section, we begin
with two systems labelled 0 and 1. System 0 is a lattice
of sides Lx × Ly and height Lz that contains a certain
number of polymer chains and a “hard-body” (i.e., an
object that occupies a certain number of lattice sites and
interacts with the polymer chains only through excluded-
volume effects). System 1 is identical in every respect but
has a repulsive potential V (> 0) at the moving boundary
of the “hard-body”1. All other interaction energies (e.g.,
polymer segment/segment interaction energy) remain the
same in both systems. With this definition, the difference
between the configurational energies of the two systems is
given by

U1 − U0 = NcV , (10)

where Nc is the number of contacts (i.e., number of seg-
ments of the polymer chains in the layer next to the mov-
ing boundary of the object). Substituting equation (10) in
equation (8) and assuming that the numbers of samples
from systems 0 and 1 are the same (i.e., n0 = n1 = n),
one gets∑

(System 1)

g(C∗ −N (1)
c V ) =

∑
(System 0)

g(N (0)
c V − C∗)

(11)

where N
(i)
c is the number of contacts in system i.

Now, let P
(1)
k be the probability of the polymer chains

having k contacts with the hard body in system 1 (i.e., in
the system with repulsive potential V at the boundary)

and P
(0)
k the corresponding probability in system 0 (i.e.,

1 For instance, in the two cases discussed in Section 4, the
moving boundary is the bottom surface of an AFM tip.

in the system with no repulsive potential). One can then
rewrite equation (11) as

kmax∑
k=0

P
(1)
k g(C∗ − kV ) =

kmax∑
k=0

P
(0)
k g(kV − C∗), (12)

where k, the number of contacts with the boundary, goes
from 0 to kmax, with kmax being the largest possible num-
ber of contacts (determined by the number of lattice sites
available at the boundary). Using the Fermi-Dirac equa-
tion for the function g(C∗ − kV ) one gets

kmax∑
k=0

P
(1)
k − P (0)

k eβ(C∗−kV )

1 + eβ(C∗−kV )
= 0. (13)

Equation (13) is a nonlinear equation with one unknown,

namely, C∗, which can be obtained once P
(0)
k and P

(1)
k are

determined using simulations. From equation (9) it then
follows that β∆F =βC∗.

A special case that can be derived from equation (13)
arises in the limit of V → ∞. In this case, the polymer
segments are excluded from the layer next to the moving

object, i.e., P
(1)
0 = 1 and P

(1)
k = 0 and eβ(C∗−kV ) = 0 for

any k ≥ 1. Equation (13) therefore reduces to

1− P (0)
0 eβC

∗

1 + eβC
∗ = 0,

which implies that

βC∗ = β∆F = − lnP
(0)
0 . (14)

As already noted by Dickman [3], equation (14) is well-
known and shows that if the probability of zero contacts
at the boundary of the hard-body is known, one can get
the change in free energy as the solid object is moved
from z = H to z = H − 1. Although very simple, this
equation is not useful for cases where the density of the
segments is high (i.e., for high compressions) since the
probability of zero contacts is very small and, therefore,
hard to determine accurately. It is in such cases where the
introduction of a finite repulsive potential at the boundary
of the hard-body is desired. In doing so, one generates
what can be thought of as three different systems: system
0 with V = 0, system 1 with V = V1 and system 2 with
V =∞. It then follows that

∆F0→2 = ∆F0→1 +∆F1→2 (15)

where ∆F0→1 is obtained from equation (13) and ∆F1→2

from equation (14) with P
(1)
0 in place of P

(0)
0 . The major

improvement of this scheme over previous methods is that
it requires no extrapolations and less number of simula-
tions.

In the procedure described above, the choice of the in-
termediate potential V1 effective at the boundary of the
moving object is arbitrary. According to Bennet [5], the
statistical error in ∆F depends on the extent of overlap
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Fig. 1. Force due to compression and conformational transition in the case of a single, end-grafted chain in a theta solvent.
The polymer chain is 100 segment long (i.e., N = 100). The error bars in the force provide a measure of the fluctuations.
(a) Shows the results for a flat-bottom cylindrical tip of radius Rt = 60 lattice units and for a square monolith with side
Lt = 120. (b) Shows the results for cylindrical tips of radius Rt = 50 with flat and hemispherical bottoms. The forces are in
units of kBT/lattice unit, where kB is the Boltzmann constant and T is the absolute temperature. (See, also, Jimenez and
Rajagopalan [1].)

of the configurational spaces sampled in the two systems.
Therefore, the idea is to choose a magnitude of V1 such
that the resulting distribution of contacts overlaps with
the corresponding distribution obtained for V = 0 while,
at the same time, guaranteeing that the probability of hav-
ing zero contacts (when V = V1) is obtained with good
accuracy. For very dense systems it may be necessary to
introduce one or more additional intermediate steps with
repulsive potentials V2, V3, etc., and decompose the total
change in the Helmholtz potential into the appropriate
number of contributions. The need for additional steps,
however, has to be tested for each particular case. For
example, we have tested the method using different val-
ues for V1 and with a number of intermediate steps. The
results show that, for our case, no additional steps were
necessary and that the largest contribution to the error
in ∆F arises from the estimation of ∆F1→2 from equa-

tion (14)2, i.e., propagation of the error from P
(1)
0 .

4 Illustrative applications

In this section we illustrate the use of this method in two
different problems, namely, the interaction of an AFM tip
and a single end-grafted chain and the interaction of an
AFM tip and a polymer brush.

2 The error in ∆F0→1 depends on the extent of overlap of
the configurational spaces sampled from systems 0 and 1 and
is inversely proportional to the number of (statistically inde-
pendent) samples drawn from the simulations [5]. In our case,
the error in ∆F1→2 dominates even when only the tails of the
contact distributions overlap.

4.1 Single end-grafted chain under compression

The first example we consider is the interaction between
the tip of an atomic force microscope and an end-grafted
polymer chain. Although primarily of theoretical interest,
this situation serves as a convenient example for study-
ing the force of compression, the accompanying confor-
mational changes and the usefulness of scaling arguments.
A number of issues influence the force measured and the
conformations available to the chain in this case; these in-
clude, for example, the solvent quality and the shape and
alignment of the tip (relative to the grafting point). Scal-
ing theories can be developed in the simpler cases (e.g.,
theta conditions and flat-bottom cylindrical tips) but can-
not be extended to more complicated ones. The simulation
method proposed in this paper offers a means to study the
latter cases. Here, we illustrate the use of the method for
some cases for which scaling theories are available [7,8]
as well as for a few others that do not permit theoretical
predictions.

Consider a polymer chain with N monomers end-graft-
ed to a surface. The chain enters a metastable state as it
is compressed by the flat bottom of a cylinder of radius
Rt and will undergo a conformational transition from a
“confined” state to an “escaped” state as the distance H
between the bottom of the cylinder and the surface is de-
creased. Scaling laws can be developed for the Helmholtz
potential F and the force of compression f in this case;
for example, for theta conditions, Guffond et al. [8] have
shown that

Fconfined = c1
Na2

H2
; fconfined = 2c1

Na2

H3
(16)
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and

Fescaped = 2c2
Rt

H
; fescaped = 2c2

Rt

H2
, (17)

where a is the monomer size and c1 and c2 are propor-
tionality constants. The transition from the confined to
the escaped state occurs at a distance H∗, the crossover
point between the free energies of the two states,

H∗ =
c1

c2

Na2

2Rt
, (18)

which, according to equations (16, 17), corresponds to a
sudden change in the force profile. In reality, however, the
transition will be less drastic as the conformation of the
chain fluctuates between the two states. One would expect
the extent of the “noise” in the force in the transition
region to depend on the free energy barrier between the
two states and the temperature (or the quality) of the
solvent. Scaling relations cannot, of course, predict this
noise, but simulations can.

The contact-distribution method described in the last
section offers a computational scheme to test such scal-
ing relations and to examine the details of the transition
region as we have illustrated in a preliminary communica-
tion elsewhere [1]. Figure 1 presents such an application
of the contact-distribution method for three types of com-
pressing objects. The results for a flat-bottom monolith
and a flat-bottom cylinder in Figure 1a reveal that the
scaling relations developed for the cylindrical tip are also
valid for monoliths with the same linear dimension, al-
though, as one would expect qualitatively, the onset of
escape for the monolith occurs at a smaller value of H.
In addition, the simulations give details on the transition
region, which is dominated by thermal noise3. The lat-
ter information is accessible only through simulations and
cannot be deduced from scaling arguments. Figure 1b also
illustrates another extension that is not accessible through
scaling arguments, i.e., compression with a hemispherical
tip. The force profile for this case differs markedly from
the result for compression using a flat-bottom tip, both in
magnitude and in the functional form.

Figure 2 illustrates the influence of another important
property, namely, the quality of the solvent (or, the tem-
perature), on the force and escape behavior. It can be seen
from Figure 2 that there is a critical temperature beyond
which thermal fluctuations blur the characterization of the
states as confined or escaped. It is also evident from this
figure that the functional form of the force for large H
for good solvents differs noticeably from what is expected
for theta solvents. (Scaling arguments for good solvents
suggest that f ∼ H−8/3 [7].) In contrast, at small H, the

3 As noted previously, the noise observed in the force ob-
tained from the simulations arises from the propagation of er-
rors in the calculation of ∆F1→2 from equation (14). It should
be noted that, within the transition region, the fluctuations in

P
(1)
0 cannot be reduced by increasing the number of samples

drawn from the simulations.
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Fig. 2. Forces in the case of a single, end-grafted chain (num-
ber of segments N = 100) compressed by a monolith with a
square cross-section (Lt = 120) in good and theta solvents.

forces for both cases follow the same form since the differ-
entiation between good solvent and theta solvent loses its
meaning at high compression.

Our objective here is to merely demonstrate the types
of information accessible through the contact-distribution
method. Some additional details on these issues may be
found in reference [1].

4.2 Compression of a polymer brush

In this section we consider an extension of the case dis-
cussed above, namely, the force of compression of a poly-
mer brush in a theta solvent.

The lattice simulations used for this purpose employ
the three-dimensional bond-fluctuation model already de-
scribed in the literature [9–11]. A lattice size of 40× 40×
100 is used with impenetrable walls at z = 0 and z = 100
and with periodic boundary conditions in the x- and y-
directions. The simulations consider m chains with N seg-
ments each, and each chain is end-grafted to the lower
wall in a periodic array. The segments interact with each
other through a square-well potential [11] with an interac-
tion parameter given by χ/kBT = −0.53. This interaction
gives rise to a behavior characteristic of theta conditions
[11]. The shape and the size of the tip used to obtain the
results are listed in Table 1. For each set of parameters,
several simulations are run for different values of H (with
at least one run for each H). In each case, the system is
first equilibrated and then sampled over 1−3×107 Monte-
Carlo steps to obtain the probability of the chain having
k contacts with the tip. Equations (13, 14) are then used
to estimate the change in the Helmholtz potential.

To the best of our knowledge, only one previous at-
tempt has been made on the simulation of the interac-
tion between an AFM tip and a polymer brush. This
work, by Murat and Grest [12], uses molecular dynamics
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Fig. 3. (a) Force between an AFM tip and a polymer brush in a theta solvent. The simulation parameters are specified in
Table 1. The radius of gyration, Rgxy, in the x-y plane under these conditions is 5.6 lattice units. (b) Segment density profiles
of the brush for three different positions of the AFM tip as indicated in Figure (a) for the monolith. The parameters used
correspond to case I in Table 1. Densities are in number of segments per unit area parallel to the surface.

Table 1. Parameters used for Figure 3.

Case Tip Size Tip Shape

I Lt = 20 Monolith, Flat Bottom
II Rt = 10 Cylinder, Hemispherical Bottom
III Rt = 5 Cylinder, Hemispherical Bottom

Note: the grafting density is held constant at 0.1. The number
of chains, m, is 40, each with 40 segments.

simulations to obtain the effect of the shape and size of
the tip on the force profile under good-solvent conditions.
The results show that the polymer chains splay-out upon
compression, thereby giving rise to a deviation of the force
from theoretical predictions based on the assumption that
the chains cannot escape from under the tip in the brush
regime [13].

In contrast to the work of Murat and Grest [12], the
present work focuses on the AFM tip/polymer brush in-
teractions under theta conditions. We have selected the
theta condition here in view of the interesting conforma-
tional transition shown in Figure 1 for single chains. It
is, therefore, interesting to examine if such a transition
exists in the case of a polymer brush. (The calculations
of Murat and Grest [12] do not indicate such a transition
at good-solvent conditions. However, our results for the
mushroom reported in the previous section suggest that
the demarcation of the states as confined or escaped and,
therefore, the “transition region” lose their meanings in
good solvents because of thermal fluctuations.)

Figures 3a and 3b present some results for the case of
a brush in theta solvents and illustrate the qualitatively
different behaviors that can be expected depending on the
magnitude of R∗t = (Rt/Rgxy), the relative size of the tip

Rt with respect to the radius of gyration Rgxy of the chain
in the x- and y-directions. (The magnitude of Rgxy for the
examples shown is roughly 5.6 lattice units.)

– For R∗t ≤ 1, one cannot speak of “compression” of the
chains since the tip penetrates the brush easily (and, as
a result, the force is essentially constant), whereas for
R∗t > 1 conformational rearrangements in the chains
can be seen for the conditions illustrated in the figure.
This effect manifests itself in the force profile through
a “transition” region, which is discussed below in more
detail.

– The conformational rearrangements can also be ob-
served from the segment density profiles shown in Fig-
ure 3b (for a monolith) for three different positions of
the AFM tip. These positions are marked by Points A,
B and C in Figure 3a and correspond to Ht = 50, 20
and 12, respectively. Curve A in Figure 3b illustrates
the density profile for an unperturbed brush (i.e., the
tip is quite far from the brush). The segment density
profile corresponding to position B (curve B in Fig. 3b)
shows that the chains under the tip are in a “confined”
state, indicated by the increased density for H . 16.
(The decrease in density for 16 . H ≤ Ht = 20 is the
result of packing restrictions.) For H > 20, the density
is essentially the same as that for a free brush. The sit-
uation in curve B thus corresponds essentially to pure
compression of the chains beneath the tip. In contrast,
a significant level of “escape” can be seen for curve C
(Ht = 12), as evident from the increase in the density
for H > 12. The densities reported are computed over
an area four times the cross-sectional area of the tip
for calculations beneath the tip (H < Ht) and over an
area three times the tip area for H > Ht (i.e., the area
occupied by the tip is not available for the chains).
The above results are meant to merely illustrate the
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conformational changes arising from the compression.
In general, for detailed quantitative analyses, the area
used for calculating the densities must be small enough
to reflect the density changes in the neighborhood of
the tip accurately. In addition, the size of the simula-
tion box must be large enough to avoid the effect of
the periodic boundary condition on the calculations.

The implications of the effects illustrated above to the
interpretation of the forces measured using an AFM are
discussed elsewhere [1] in the context of the compression
of a single chain.

In the two cases presented above, the AFM tip is con-
sidered as a semi-infinite object, that is, the object is not
fully contained within the simulation box. The contact-
distribution method can, however, be applied to situations
involving finite-sized objects, but the estimation of the
change in free energy requires some additional steps. The
additional steps are required since the introduction of a
repulsive potential to a portion of a finite object (such as
a spherical particle) results in a distortion, rather than a
displacement, of the particle. If one denotes the distorted
state as system 3 and the original and the new positions of
the objects as systems 1 and 2, respectively, the required
result, ∆F1→2, is then obtained from

∆F1→2 = ∆F1→3 −∆F2→3. (19)

We shall consider this in a forthcoming publication.

5 Concluding remarks

We have introduced a new method for determining the
Helmholtz potential differences and forces in polymer
and colloid mixtures from lattice Monte-Carlo simula-
tions. The method has been used to obtain the force due

to the compression of an end-grafted polymer chain with
an AFM tip and due to the compression of a polymer
brush. The results illustrate how the method can be used
to test or extend scaling theories and to examine confor-
mational transitions. The method introduced here can be
easily extended to systems with physisorbed chains and for
interactions between finite objects in polymer solutions.
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